M4407

Mikrobielle Biotechnologie

Microbial Biotechnology

Modulverantwortlicher

Prof. Michael Bott (m.bott@fz-juelich.de)

Dozentinnen/Dozenten

Prof. Michael Bott (m.bott@fz-juelich.de)

Prof. Roland Freudl (r.freudl@fz-juelich.de)

Dr. Melanie Brocker (m.brocker@fz-juelich.de)

Dr. Tino Polen (t.polen@fz-juelich.de)

Modulorganisation

Dr. Melanie Brocker (m.brocker@fz-juelich.de)

Arbeitsaufwand	Leistungspunkte	Kontaktzeit	Selbststudium	Dauer
420 h	14 CP	300 h	120	1 Semester
Lehrveranstaltungen		Häufigkeit des Angebots		Gruppengröße
Praktikum: 18 SWS		Jedes Sommersemester		bis zu 12
Vorlesung: 2 SW	'S			Studierende

Lernergebnisse/Kompetenzen

Die Studierenden können:

- die grundlegenden Konzepte der Stoffwechselphysiologie, Biochemie und Molekularbiologie von biotechnologischen Prozessen mit Mikroorganismen beschreiben und erklären.
- selbständig mikrobiologische, biochemische und molekularbiologische Methoden/Techniken/Experimente planen und durchführen (z. B. Mikroorganismen kultivieren, Enzymaktivitäten und Metabolit-Konzentrationen ermitteln sowie genombasierte Methoden wie Transkriptomanalysen und Proteomanalysen anwenden).
- selbstständig und präzise mit Messgeräten, Apparaturen, Instrumenten und Maschinen aus dem Labor umgehen (z. B. Bioreaktoren, HPLC, MALDI-TOF-Massenspektrometer, FACS...).
- selbständig Versuche beschreiben, quantitativ auswerten, interpretieren, und beurteilen.
- eigenständig Versuche planen und durchführen.

Lehrformen

Vorlesung, Praktikum

Inhalte

Vorlesung:

- mikrobieller Stoffwechsel, mikrobielle Produktionsprozesse, z.B. für Ethanol, Butanol, Aminosäuren, Antibiotika;
- bakterielle Stoffwechselregulation, z.B. Katabolitrepression, stringente Kontrolle, regulatorische RNAs:
- Proteinsekretion in Bakterien über Sec- und Tat-Weg;
- Grundlagen verschiedener omics-Methoden (z.B. Transkriptomics, Proteomics, Metabolomics).

Praktikum:

Mikrobiologische, biotechnologische und genombasierte Methoden an ausgewählten Beispielen, z.B.

- Metabolic engineering: gezielte genetische Modifikation des Stoffwechsels zur Verbesserung der Produktbildung durch Bakterien (Herstellung von Plasmiden, Deletionsmutanten, Nachweis der Deletion durch PCR)
- Aminosäureproduktion: Kultivierung in Bioreaktoren, Substratverbrauch und Produktbildung

(HPLC), Enzymaktivitäten, cytoplasmatische Metabolitkonzentrationen

- Ganzzell-Biotransformation: Umsetzung von Zuckern zu Zuckeralkoholen; quantitative Bestimmung der Produkte (HPLC), der Biokatalysator-Aktivität und -Stabilität
- Proteintranslokation: Nachweis sekretierter Enzyme (Aktivität, Western-Blot)
- Globale Regulationsmechanismen: Transkriptomanalysen mit DNA-Microarrays, Proteomics (2D-Gelelektrophorese und MALDI-TOF-MS), Protein-DNA-Interaktion, gerichtete Mutagenese, Transformation

Teilnahmevoraussetzungen

Formal: Zulassung zum Masterstudiengang

Inhaltlich: Grundkenntnisse in Allgemeiner Biologie, Mikrobiologie, Biochemie und Moleku-

larbiologie werden vorausgesetzt.

Prüfungsformen

- (1) Kompetenzbereich Wissen (70 % der Note): mündliche Prüfung über die Inhalte der Vorlesung und des Praktikums
- (2) Kompetenzbereich Dokumentation (30 % der Note): Protokoll (Auswertung und Diskussion wissenschaftlicher Experimente)

Voraussetzungen für die Vergabe der Leistungspunkte für dieses Modul

- (1) Bestehen des Kompetenzbereichs Wissen
- (2) Regelmäßige und aktive Teilnahme am Praktikum
- (3) Abgabe eines Protokolls, das den Anforderungen einer wissenschaftlichen Dokumentation entspricht

Zuordnung zum Studiengang/Schwerpunkt (Major- nur im Masterstudiengang)

Schwerpunkt "Mikrobiologie und Biotechnologie"

Verwendung des Moduls in anderen Studiengängen

Master Biochemie

Stellenwert der Note für die Endnote

Die Note fließt entsprechend der Leistungspunkte (CP) gewichtet in die Gesamtnote ein: M.Sc. Biologie 14/72 CP.

Unterrichtssprache

Deutsch

Sonstige Informationen

Optional wird ein 1-stündiges Masterseminar angeboten, in dessen Rahmen neue Originalarbeiten zum Thema "Mikrobielle Biotechnologie" durch die Studenten vorgestellt werden. Das Modul wird zentral vergeben.